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Scale effects in a wave-refraction experiment 
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(Received 3 June 1982) 

The experimental results of Provis (1975, 1976) for wave amplification at a conical 
island bear little resemblance to the theoretical predictions of Smith & Sprinks (1975). 
Here Provis’s suggestion is confirmed : that his experiments were dominated by 
viscous damping and by standing waves between the island and the wavemaker. 
Estimates are given as to how large an experiment needs to be to avoid these 
important scale effects. 

1. Introduction 
Provis (1975, 1976) describes a series of experiments concerned with the possibility 

that waves can be trapped near a conical island by the effects of refraction. These 
experiments were originally designed to test the resonance-frequency predictions of 
Shen, Meyer & Keller (1968). More recently Smith & Sprinks (1975) have calculated 
the wave-amplitude response for the scattering a t  a conical island of a plane wave 
incident from infinity. Neither the resonance frequencies nor the amplitude predictions 
were borne out by the experiments. 

The wave basin used by Provis (1975, 1976) was 5.55 m wide and 5.80 m long, and 
occupied almost the whole area of a small 4th-floor laboratory. For structural reasons 
the water depth, in consideration of the floor loading, was limited to  0.15 m. The 
waves were generated by a plane movable flap 3.75 m long, which was hinged a t  the 
basin floor. Plane beaches were placed on the other three sides of the basin to absorb 
waves - both the progressive waves and those scattered by the topography. Most of 
Provis’s experiments involved in a cone of radius 1.5 m with a slope of 1 : 10. The water 
level in the tank was adjusted so that the vertex of the cone formed an island of the 
required radius (see figure 1) .  The area of the basin was such that keeping the surface 
clean posed some problems. When measurements were not being made the surface 
was continually being skimmed by having a slow flow of water into the basin and 
allowing the excess to flow over a weir. 

It is natural to attribute the failure of the theoretical predictions to scale effects 
in the laboratory-sized experiments. Provis (1975) gives theoretical and experimental 
evidence to suggest that viscous damping and wave interactions between the island 
and the wavemaker were of particular importance. Here we take up Provis’s 
suggestion and we give the appropriate modifications of the wave-amplitude predic- 
tions. A useful by-product is an estimate as to how large an experiment would have 
to be to simulate correctly oceanic conditions of effectively undamped waves in an 
effectively infinite ocean. 
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FIGURE I .  Plan of Provis’s (1975) experiment 

2. Viscous damping 
In  a related experiment, involving a submerged circular sill, Pite (1977) found a 

similar disparity with the theoretical predictions of Longuet-Higgins ( 1967). However, 
Pite managed to suppress the standing waves and hence to isolate the effects of 
viscous damping. He showed that to account for the considerable reduction in 
amplification it sufficed that in each region of constant depth the local wavenumber 
be determined as the complex solution of the viscous dispersion relation. 

For water with an inextensible surface film and with surface tension ignored, the 
calculation procedure given by Lamb ( 1  932, 9 349) leads to the dispersion relation 
(see appendix) 

2k cosech kh 
+ ( ; ) 2 +  m sinh mh 

k tanh kh } = qktanhkh{l- 2k coth kh 

m tanh Pmh m tanh mh 

with m2 = iw /v+  k2,  ( 2 . l b )  

where o is the wave frequency, k the complex wavenumber, h the water depth and 
v the viscosity. If k,  denotes the wavenumber in the absence of viscosity, then for 
small viscosity the leading-order correction is given by 

v 4 cothk,h-$tanhk,h 
k‘ = (G) > 

CP cg 

where c p ,  cg are the local phase and group velocities. 
In  gently shoaling water the effects of viscosity can be expected to be locally almost 

the same as for water of constant depth. An appropriate modification to the mild- 
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slope equation (Berkhoff 1973; ,Jonsson & Brink-Kjaer 1973; Smith & Siprinks 1975) 
is 

V.((cpcg-61+i62)V<)+w2 ( 2 . 3 n )  

6 1 -  - 6 2 - ( l w ) 1  - - g(l+sech2k,h). (2.36) 

For clean water (with no appreciable surface film or scum) there is only significant 
viscous damping a t  the rigid bed and only the sech2 k ,  h part of the factor in ( 2 . 3 b )  
need be retained. Since viscosity is primarily of importance in shallow water (owing 
to the reduced wavelength and increased amplitude), and where sech2 k,  h = 1, to a 
good approximation the clean-water results correspond to a quartering of the 
viscosity. 

We remark that i t  is the structure of the thin viscous Stokes’ layers near the free 
surface and the rigid bed that makes it appropriate to model the viscous corrcvtions 
as second derivatives rather than as lower-order terms. For example. the lowcr 
boundary condition for the inviscid flow in the interior of the fluid is 

(2.4) 

(Mahony 1971, § 5 ) ,  where q5 is the velocity potential and V the horizontal derivative 
operator (az, a,, 0). As shown by Smith & Sprinks (1975, appendix A), the mild-slope 
equation can be derived formally by taking the cosh [ k , ( z +  h)]/cosh k ,  h vertical 
cbomponent of the full three-dimensional linear wnter-wave equations. At the channel 
bed the velocity potential is reduced by a factor sech k,  h. Another factor of scch k ,  h 
arises in taking the weighted vertical average of the full equations. Thus the viscous 
correction term in (2.4) yields the sech2 k,  h term in a formal derivation of ( 2 . 3 ~ 1 ,  b ) .  
Likewise, the modification associated with the inextcnsible surfave film (if present) 
can be derived from the upper boundary condition 

3. Scattering of damped waves 
The scattering theory given by Smith & Sprinks (1975, $4) for circularly symmctric 

islands has to be changed in several minor respects. First, the far-field wavcnumber 
K for waves coming in from the right now has a negative imaginary part 

K2(Cp Cg - 6, + i82)m - - w 2 ( z ) m .  (3.1) 

This means that the waves must have been generated a t  a finite distance from the 
island. For this same reason the complex amplification factors A ,  in the Fourier-series 
representation of the waves 

m 

5 = A, C O ( 4  + 2 c. A ,  C,(r) cos me ( 3 . 2 )  
m=1 

depend on our choice of the reference position. So for mathematical convenience we 
take the reference wave height to be that of the incident wave along the y-axis (i.e. 
the incident wave before it reaches the island is written eiKx). 
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Secondly, a t  a beach the attenuation terms S,, S, give rise to a singular perturbation 
in so far as they move the singular point slightly in the ordinary differential equation 
for cm(r)  : 

with 

(c,cg-SS,+iS,) 6 = 0, (3 .3a)  1 - 
dr 

5, = 1 ( r  = a) .  (3.3b) 

In  the derivation of (2.2, 2.3)  it is implicit that  locally the effect of the viscous term 
is small. Thus for consistency we must choose the boundary conditions for 6, such 
that near the shoreline r = a the solution is not a singular perturbation (i.e. the 
shoreline motion is forced by the incident waves and not vice versa). To do this we 
represent 6, explicitly as a regular perturbation expansion with respect to both 
p = ( r - a ) / a  and (v/2ua2a2)4: 

where a is the beach slope (cf. Smith & Sprinks 1975, appendix €3). I n  practice it has 
been found that the same results are achieved simply by using a computational 
stepsize much larger than the region in which the S-terms dominate. Presumably this 
is the case because in a finite-difference scheme it  is implicit that a power-series 
representation can be used. 

Thirdly, the radiation condition must be replaced by the seemingly different 
requirement that  the scattered wave 6- elKx decays exponentially away from the 
island. Thus, any exponentially growing terms in 5 must be exactly cancelled by 
corresponding terms in eiKs. This leads to the condition 

A ,  c,(r) - i irnHg)(Kr) as r+ CO. (3 .5)  

Since 5, can only be determined numerically and may have systematic errors, (3.5) 
itself is not an accurate basis for evaluating A,. However, the integral formulation 
of (3 .3a )  which is presented by Smith & Sprinks (1975) provides us with the more 
robust relationship 

where b is the radius of the island shelf. The complex linear functional L,  is defined 

6, z= L m J m ( K r ) - M m  Ym(Kr)  ( r  > h ) ,  (3 .6)  

with (3.7 b )  

and for M ,  we simply replace Y, by J,. The integrand in ( 3 . 7 ~ )  decays away from 
the shoreline and thereby annuls any systematic numerical errors in ern, particularly 
a t  high frequencies. Using the relationship (3 .6)  in (3.5) we h a w  

(3.8) (A,( = (L ,  + Mm(- l ,  arg (A , )  = +mx - arg ( L ,  + iM,). 

Figure 2 (a) shows the results obtained by Smith & Sprinks (1975, figure 5) for the 
conical island geometry 

h = 0.1(7"--u) (a < 7" < 20a). (3.9) 
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Figure 2 ( b )  shows the corresponding results when there is an inextensible surface film 
and with the non-dimensional viscosity appropriate to Provis' (1975) experiments 

vg-tad = 2 x 10-5. (3.10) 

I n  accord with physical intuition and with the results of Pite (1977) for the circular 
sill, we see that the main effects of damping are to widen the resonance humps and 
to reduce the wave amplitudes, particularly a t  high frequencies. 

4. Standing waves between a wavemaker and an island 
I n  a qualitative attempt to explain the occurrence of standing waves in Provis's 

(1975) experiments, Smith (1975) has pointed out the existence of virtual trapped 
standing-wave modes. These modes correspond to rays that repeatedly reflect back 
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FIGURE 3. Ray paths for the reflection of wave energy between the wavemaker and the island. 

and forth between the wavemaker and the island (see figure 3). In accord with this 
ray description, Smith's resonance-frequency predictions correspond to there being 
a large integer number of half-wavelengths between the wavemaker and the island, 
i.e. 

Here w is the distance from the centre of the island to the wavemaker, and the extra 
factor comes from the Bessel-function form of the waves close to the shoreline (Shen 
& Keller 1975). The analysis of this section can be regarded as being the quantitative 
counterpart of the previous work of Smith (1975). 

Our aim is to solve (2.3a) subject to the wavemaker boundary condition 

1.: = w), (4.2) 3 = iKelKX 

ax 
and to the far-field condition that the scattered wave {-eiKX is outgoing. The 
normalization of the wavemaker motion has been chosen to ensure that as w tends 
to infinity the solution for { tends to that of the idealized case of a wave incident 
from infinity. 

Over the island shelf we again use thc Fourier-series representation 
00 

6 = C A,{,(r)cosmO, with A - ,  = A,, 5-, = 5,. (4.3) 
m=-m 

However, in the constant-depth outer region T > b a more appropriate representation 
is co 

(4.4) 6 = elKz + imgm{Hg)(Kr) COS mO + HgI(K8) COS md), 
m=-oc 

where B-, = B, and 8, 6 are the polar coordinates with respect to the image island 
(sce figure 4). The conjunction of real and image island terms ensures that both the 
wavemaker and far-field conditions are satisfied. 

Sufficiently close to the edge of the island shelf (i.e. b < r < 2w) we can use Grafs 
formula (Abramowitz & Stegun 1964, equation (9.1.79)) together with the Bessel- 
function representation for elKX to  get 

oc 
-i C imB, Ym(~r) cosm6. (4.5) 

,=-so 



Bcule effwtx i n  u wuvP-rrfraction PxprrimPnt 46 1 

FIGVRE 4. D$inition sketch of the  polar coordinates ( r ,  0) and 
(e .  0) relative to  the real and  image islands 

Alternatively, using the relationship (3 .6)  we have 
m a 

5 = A ,  L,.J,(KT) cosmfl-  C A ,  M ,  Y,(KY) cosm,O. (4.6) 
m=-e ,=-a 

Equating like terms in the two Bessel-function representations (4.5), (4.6), we can 
derive coupled linear equations involving only the A ,  coefficients : 

A less elegant but numerically more convenient formulation is 
00 

A,(L,+iM,)+iAoMoH~)+i C A,M,(H$)+,+(-l)min(,,m)H(z) Im-ll ) = im (m 2 o), 
1=1 

(4.8) 
where the argument ~ K W  of the Hankel functions has been suppressed. 

For Yrovis's (1975) experiments the wavemaker was situated at about forty island 
radii from the centre of the conical island. Figures 5(a-e) show the undamped 
predictions of the amplitude factors [Arn[ for this particular geometry. As an aid to 
interpretation the figures show thc standing-wave resonance predictions 
(n = 5, ..., 9) derived from (4.1), and the edge-wave resonance predictions 
(m = 1 ,  ..., 4) derived from the work of Smith (1974). Weak resonances can be 
identified close to each of these frequencies. Moreover, the responses are not restricted 
to a single Fourier component A,. By contrast with figures 2 (a ,  b ) ,  the proximity 
of the wavemaker makes the results complicated, and qualitatively very similar to 
Provis's (1975) figures (6.3)-(6.5). Thus we confirm Provis's assessment that  his 
ckxperiments were dominated by the effects of standing waves between the wavemaker 
and the island. 

5. Amplitude and phase maps 
For tsunamis i t  is the wave height at the shoreline which is of primary interest. 

Hcnw the emphasis upon the complex amplification factors A ,  (we recall that  the 
radial functions cm(r )  are normalized to be equal to 1 at the shoreline). However, there 
is a wealth of additional information in the rest of the wave-field (Berkhoff 1976; 
Jonsson & Skovgaard 1979). 

Havingseparately analysetl theeffects of viscous damping and of island-wavemaker 
interactions, i t  is straightforward to allow simultaneously for both effects ( i  .e. to allow 
K to be complex in (4.8)). Figure 6(a-c) gives amplitudes and phase predictions close 
to the island at the frequencies 

waig-4 = 0.3, 0.45. 0.6. (5.1) 
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FIGURE 5(a-c). For caption see facing page 
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when the non-dimensional viscosity has the value 

vg-;a-t = 2 x 10-5, (5 .2 )  

and the water surface is assumed to be clean. In  accord with the earlier results of 
figures 2 and 5 there is a progression from two to four amplification lobes near the 
shoreline as the higher Fourier components get excited. However, the dominant 
feature is simply the bending around and running-up of the incident waves a t  the 
front of the island. 

Figure 7 shows the experimental results obtained by Provis (1975) for the case 

wa4g-t = 0.462, b = 21.3a, w = 43.3a. ( 5 . 3 )  

The resemblance to figure 6 ( b )  is less than we might have hoped. However, Provis 
(1975) comments that when the phase measurements were made the possibility of 
amphidromic points was not considered, and there are probably additional amphi- 
dromic points which were not resolved. For the wave amplitudes there is no such ready 
excuse. Close to  the island the observed wave amplitudes are smaller than predicted 
(possibly due to nonlinear and surface-tension effects at the water linc). Also, behind 
the island there are not the distant regions with amplitude in excess of 2 .  
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Phase contours 

Amplitude contours (values 2, 4, 8 )  

(a 1 

FIGTJRE 6 ( a ) .  For caption see p. 466. 

The sensitivity of the results to the precise frequency, shelf radius, and wavemaker 
position, is insufficient to explain these errors. Presumably the fault lies in the many 
remaining deviations between idealization and experiment. For example, the slow 
drift of water in the experiments (the surface-skimming system) might not have swept 
away the surface scum close to the island, the three beaches in the experiment (see 
figure 1)  cause additional damping, and the wavemaker was of limited extent (the 
effect of which is compounded by the refraction of wave energy towards the island). 
Rather than pursuing these more minor departures between theory and experiment, 
$6  asks instead how could the major difficulties, of viscosity and of standing waves, 
be avoided. 
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Phase contours 

Amplitude contours (values 2, 4, 8, 16) 

(b) 

FIGURE 6 ( b ) .  For caption see p. 466. 

6. Avoiding scaling troubles 
I n  assessing the effects of viscosity we can consider separately the far and near 

island effects. Across the island shelf we can use the deep-water attenuation rate to 
assess that there will not be significant fore-aft amplitude differences if 

is small. For the conditions of figure 6 ( b )  this attenuation exponent has the value 0.02, 
and is indeed small. 

To analyse the waves close to the island we follow Shen & Keller (1975) and pose 
the representation 

( 6 . 2 ~ )  
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FIGURE 6. Contours of the predicted amplitude and phase (relative to the incident waves) near the 
conical island when the non-dimensional frequency wuig-i has the values (a )  0.3, ( b )  0.45, ( c )  0.6. 
Amphidromic points on the phase contours are indicated by the large dots. 

w here 
(6.26) 

c = O ,  C = l  ( r = a ) .  ( 6 . 2 ~ )  

Thus the comparison function $ has the same structure near the beach as does the 
radial function <,(Y). This means that the amplitude and argument functions Cm(r) ,  
cm(r)  are slowly varying, at least in the vicinity of the beach. 

Substituting the representation (6.2a) into the differential equation (3.3a) and 
separating out coefficients of @ and of [ [ + A ]  d@/dt, we derive the coupled equations 

w2cg/cp m2 _ _  1 
cpcp-S1+iS2 r 

1 
+ (cg cp - 8, + is,) rC' dr 
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Phase contours 

Amplitude contours (values 2, 4, 8, 16) 

FIGURE 7. Provis's (1975) experimental results for the relative amplitude and phase of waves with 
frequency 5.449 rad s-l near a conical island of slope 0.1, radius 70.5 mm and shelf radius 1.50 m,  
with a wavenumber at distance 3.05 m .  

a ( t + 4  
r-a rd (cp cg - 6, + is,) dt /dr '  

(6 .3h)  

If we neglect the derivatives of C, then the eikonal equation (6 .3a)  can be 
integrated : 

The displacement A of the singular position is chosen, as in (3.4), so that the effect 
of damping is a regular perturbation: 

(6.5a, b )  

I n  the representation (6.2a), the radial function c,,, is diminished by a factor J0(2A4). 
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Neumann’s addition formula (Abramowitz & Stegun 1964, equation (9.1.75)) enables 
us to express Bessel functions of complex argument: 

W 

J,(u + iv) = J,,(u) I,(v) + 2 C J k ( u )  I k ( v )  i-“. (6.6) 
k=l 

Thus for large d the viscous attenuation varies exponentially with 249 (i.e. the 
modified Bessel functions Ik grow exponentially). Hence, the effect of damping close 
to the island will not be significant if 

is small. For the conditions of figure 6 ( b )  this dimensionless group has the value 0.7,  
showing that for Provis’s experiments viscosity near the island was not negligible (cf. 
the differences between figures 2 (a) and 2 ( b ) ) .  

For edge-wave resonances the combination of terms u2a/ag is of order unity. Thus 
for experiments of different size the dimensionless group (6.7), with w eliminated, 
scales as via-ia-ig-4. Hence i t  is advantageous to increase both the island radius and 
the steepness of the beach. I n  the laboratory realistic beach slopes, of order 0.01, are 
therefore quite out of the question. I n  Provis’s experiments even a slope of 0.1 was 
too modest to satisfy this requirement, yet a steeper slope would be inappropriate 
for the ‘ mild-slope ’ or ‘longwave ’ approximations. 

For the standing waves between the island and the wavemaker, the condition for 
negligible effects is that  the wavemaker distance w is so large that the Hankel-function 
coefficients Hn(2k ,  w) in (4.7) are negligible. Alas, the decay rate is only 

Thus to get the errors down to 10% it would be necessary to  have the wavemaker 
a t  least 5 wavelengths distant from the island. Even this modest level of accuracy 
would require a doubling of the size of Provis’s wave basin (see figure 1 ) .  

Fortunately, Yite (1977) found a simple means of avoiding the troubles associated 
with the standing waves. He used a section of wave absorber (a bed of glass marbles) 
between the wavemaker and the island shelf. Any reflected waves from the island 
(see figure 3) would suffer double attenuation before returning to  the island. 

7. Conclusion 
The reasonable agreement between the theoretical predictions shown in figure 6 ( b )  

and the experimental results shown in figure 7 gives us confidence in the theoretical 
modelling of waves over bottom topography of mild slope. However, instead of being 
dominated by the trapping of edge waves, Provis’s (1975, 1976) experiments are 
strongly effected by viscous damping near the water line and by standing water 
between the island and the wavemaker. 

Alas, the shortcomings of Provis’s experiments are not due to lack of technique, 
but instead are due to intrinsic scaling difficulties. In  wave experiments with gently 
sloping beaches, the effects of the reduced depth and increased wave amplitude 
compound to make viscosity much more important than in experiments with vertical 
boundaries. This can be ameliorated if steep beaches or large islands (longer waves) 
are used. Unless a wave absorber is used to suppress reflections between the 
wavemaker and the island (Pite 1977), there can be strong standing waves. At least 
five tleep-water wavelengths are needed between the island shelf and the wavemaker. 
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This requirement, coupled with the desirability of large islands, puts great demands 
upon the size of the wave basin -demands which are way beyond the size of the 
laboratory that was available to Provis. 

The authors wish to thank Dr David Provis for permission to reproduce his 
experimental results. R.S. was supported by the Royal Society and by British 
Petroleum, 

Appendix. The dispersion relation for damped water waves 

two-dimensional flow are 
For a viscous fluid the mass conservation and linearized momentum equations for 

At the lower rigid boundary both components of velocity vanish: 

u = 0 ,  w = o  ( z = - h ) .  (A 2a, b )  

For small-amplitude motions the free-surface displacement 5 is related to the vertical 
velocity w by the kinematic boundary condition 

= w ( z  = 0); - d5 
dt 

and the normal stress must balance the sum of surface tension and the hydrostatic 
pressure : 

In  general the shear stress at the surface is balanced by surface elastic forces. For 
simplicity we consider the extreme case of a dirty surface unable to  move: 

u = 0 ( x  = 0). (A 5) 

To solve the field equations (A 1) subject to  the boundary conditions (A 2-5), we 
follow the procedure given by Lamb (1932, $349). The velocity field is decomposed 
into rotational and irrotational parts : 

This satisfies the mass-conservation and momentum equations (A 1 a-c) provided 
that 

In  terms of $ and $ the kinematic and normal-stress boundary conditJions (A 3),  (A 4) 
a t  the free surface can be combined: 
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We now restrict attention to solutions with horizontal and temporal dependence 
exp (ikx + iwt). Appropriate representations for the z-dependence of the velocity 
potential r$ and stream function y? are 

@ = Acosh[k ( z+h)]+Bs inh[k ( z+h)] ,  (A 9 a )  

$ = Ccosh[m(z+h)]+Dsinh[m(z+h)],  (A 9b)  

(A 9c) 

(A 10) 

with 

where A ,  B, C,  D are undetermined constants. The no-slip bottom boundary 
conditions require 

m2 = iw/v+ k2, 

ikA+mD = 0, -kB+iC = 0. 

Whence we can eliminate B,  D: 

(A 11) 

(A 12) 

ik 
m 

$ = -iBcosh[m(z+h)]--Asinh [m(z+h)]. 

The dirty-surface condition requires 

Ak(coshkh-coshmh)+ B(ksinh kh-msinhmh) = 0, 

and the combined boundary condition (A 8) yields 

- w2 cosh kh + 2iwvk2(cosh kh - cosh mh) + (gk + Tk3) (sinh kh - 
m 

+ B{ - w2 sinh kh + 2iwvk( k sinh kh - m sinh mh) + (gk + Tk3) (cosh kh - coshmh)} = 0. 

(A 13) 

We can eliminate A and B from the above two equations, leaving the dispersion 
relation 

+ -  + k coth kh 
w2{l- ktanhkh ] = (gk+!4"k3)tanhkh 1-2 

m tanh mh { mtanhmh (> 
(A 14a) 

m2 = iw/v+ k2. (A 14 b )  
with 

As we should expect, for small viscosity (i.e. for large m) this dispersion relation yields 
the well-known inviscid water-waves result 

w2 = (gk + Tk3) tanh kh. (A 15) 
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